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ABSTRACT

This paper develops a dynamic model of behavioural response to the risk of infectious
disease. People respond to increased risk of infection by either making marginal
adjustments in risky behaviour or by moving to a corner solution where perceived
risk is zero. Individuals most prone to high-risk activity will tend to reduce activity
less than low-risk people; very high risk people may exhibit “fatalism” and increase
risky behaviour as the risk of becoming infected rises. Beliefs about the future course
of the epidemic affect current behaviour even when utility is additively separable:
pessimistic beliefs induce more risky behaviour. Simulations contrast the disease
dynamics generated under these behaviours with those of standard epidemiological
models and examine policy issues.
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This study examines behavioural change to the risk of acquiring an infectious
disease and how such responses affect the course of the epidemic. Although the results
apply to other diseases, the specific disease in mind is the human immunodeficiency
virus (HIV) — the causative agent of acquired immunodeficiency syndrome (AIDS).
It is estimated that ten million people worldwide — one million of those in the
United States — are infected with HIV (Tarantola et al. (1993)). Unlike many other
diseases, people can choose their level of exposure to infection — as of 1992, over
90% of reported infections were due to either sexual contact or IV drug use (Centers
for Disease Control (1993)). Understanding how behavioural responses to the risk
of infection affect the way the epidemic moves through the population is therefore
important for predicting the effectiveness of various policy interventions designed to

limit the spread of the disease.l

This paper develops a dynamic model of behaviour during an epidemic. The
model predicts that behaviour in the current period depends on the agent’s beliefs
about the probability a given contact is infected both in the current period and in
future periods. Response to increases in the probability of meeting an infected partner
varies across agent type. An increase in current risk per contact causes some agents
to increase their desired number of contacts, others to reduce their risky contacts,
and still others to cease having risky contacts altogether. Expectations about the
epidemic’s future affect current behaviour: more pessimistic expectations reduce the
incentive to avoid risk in the present, which can spur the disease. These results imply
that the higher-order moments as well as the mean of the distribution of rates of
partner change will generally vary with disease prevalence, which is confirmed by

empirical evidence.

1 The epidemiological literature generally assumes away systematic behavioural response
to the risk of infection. Sattenspiel (1990) notes, “There is too little attention paid to
human cultural and behavioural factors in the formulation of models ... [Instead,] the
majority of mathematical models are still being developed by ecologists, parasitologists,
and mathematicians ... who tend to take human biology and behaviour as a constant.”



The implications of these behavioural responses are explored via numerical sim-
ulation. Simulated agents are heterogeneous in an underlying taste parameter, which
is calibrated to survey data from the San Francisco Men’s Health Study (SFMHS).
Three methods of expectations formation are examined: mypoic, in which behaviour
is invariant to the risk of infection; adaptive, in which the agents’ latest information
on risk is assumed to prevail in the current and all future periods; and rational,
in which agents correctly predict current and future risk. Overall, the simulations
demonstrate two findings. First, disease dynamics generated by this model differ
substantially from dynamics generated by the typical epidemiological model. Sec-
ond, behavioural response and how expectations are formed can either spur or retard
disease spread. The consequences of policy interventions are also simulated. Rapid
public health efforts to transmit awareness of the disease and its modes of transmis-
sion are shown to reduce the total number of infections which occur. However, at
the calibrated parameters, a partially effective vaccine is predicted to increase new
infections due to offsetting behavioural changes. These results suggest that finding
effective policies for dealing with the AIDS epidemic depends on both qualitative
and quantitative knowledge of the interaction between disease dynamics and human

behaviour.

Previous studies of models incorporating response to incentives to change be-
haviour in the presence of the risk of acquiring an infectious disease include Philipson
and Posner (1993), Geoffard and Philipson (1995), and Kremer (1994b, 1996). This
paper extends these models in six significant ways. First, agents solve an explicitly
dynamic problem. The dynamic framework permits consistent modeling of behaviour
when the risk of infection varies over time. Second, the analysis permits an explicit
examination of how beliefs over future states of the world affect today’s behaviour.
I show that expectations that risk will be high in the future reduce incentives to re-
duce risky activity today, even when utility is additively separable across time. This

effect alters both the initial spread of the disease — expectations of high risk can be



self-fulfilling — and has implications for certain public policy interventions, such as
the announcement of partially effective vaccines. Third, decisions in this paper are
over both whether to engage in any risky activity at all (as in Philipson and Geof-
fard (1996)) as well as how much risky activity to undertake, if any (as in Kremer
(1996)). Fourth, I allow agents to periodically learn their infection status (a special
case obtains when status is never revealed and the problem collapses to a static one).
Thus, the model captures the feature that, in the developed world, testing for HIV
infection is readily available and frequently done.? Fifth, I present simulations with
a large number heterogeneous agents — with the distribution of the parameter of
heterogeneity calibrated to SFMHS data at 100 points — which explore the impacts
of various policy interventions and of several methods of forming beliefs. Finally,
by modeling the problem in discrete rather than continuous time, the analysis lends

itself naturally to empirical analysis of panel data on risky behaviour.

I. Background

There is considerable empirical evidence of behavioural responses to the risk of
acquiring HIV. Most studies examing such response have focused on homosexuals,
since in the developed world both the probability of meeting an infected partner
and the probability of transmission are much higher for homosexuals than for het-
erosexuals (May, Anderson, and Blower (1990)). Philipson and Posner (1993) and
Ahituv, Hotz, and Philipson (1993) both found that that condom use was responsive
to the prevalence of AIDS. Becker and Joseph (1988) summarized empirical findings
in cross—sectional and longitudinal studies of behaviour of high-risk individuals that

documented substantial decreases in both number of partners and high-risk acts.

2 Over 80% of SFMHS participants chose to receive test results by 1988 (personal commu-
nication, James Wiley, Survey Research Center, University of California at Berkeley.)



HIV prevalence in San Francisco reached between forty and sixty percent
amongst the homosexual population in the eighties (Kellog et al. (1990)). Many
studies have investigated behavioural change in this group (e.g., Winkelstien et al.
(1987a, 1987b) and McKusick et al. (1985a, 1985b)). McKusick et al. (1985a) report
an increase in monogamy from 35% to 41% between November 1982 and November
1983, and McKusick et al. (1985b) report a decrease in mean number of partners per
month from 6.7 to 3.2. These and other studies document a decrease in mean number
of partners and an increase in the proportion of respondents reporting celibacy or
a monogamous relationship. Few empirical investigations have examined changes in

the higher-order moments of the distribution of rates of partner change, however.

Table 1 shows the mean, standard deviation, skewness and selected percentiles of
the distribution of number of partners per six-month period in a sample of homosexual
men in San Francisco prior to 1982, taken to be the pre-AIDS period, and at the end of
1983 /beginning of 1984, when AIDS information was widely known and prevalence in
the area was high.® The mean number of partners falls by roughly a third, consistent
with the studies above, but the standard deviation actually increases substantially.

Moreover, the skewness of the distribution increases, from 3.3 to 13.3.%

3 These statistics were derived from the San Francisco Men’s Health Study, a panel
probability sample of men living in an area of San Francisco designed to study the
history of AIDS, see Winkelstein et al. (1987a) for details of the sample design. The
end of 1983/beginning of 1984 rates are taken from the first wave of the survey. The
pre-1982 rates of partner change are averages constructed by taking the self-reported
(in the first wave of the survey) lifetime number of partners in 1984, subtracting the
number of partners reported between 1982 and 1984, and dividing by the number of
years between the time the respondent reported beginning regular sexual encounters
and 1982. The sample is restricted to homosexual or bisexual men reporting one or
more partners per six-months in both periods.

These figures are consistent with other studies. Schecter et al. (1988), for instance,
reports annual number of partners in a sample of sexually active (more than eight
partners at the first observation period) homosexual males in Vancouver falling from
32.8 to 20.3 between 1984 and 1986 while the standard deviation falls from 28.5 to
only 24.2, the median decreases from 24.0 to 12.0, and the upper limit of the range
increases from 200 to 208, indicating an increase in skewness (unreported). Amongst
susceptibles, the mean falls from 33.5 to 22.0 while the standard deviation changes by
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There are two key features of the data: (1) changes in number of partners
are not proportional across people with different risk levels. The mean number of
partners falls more than the standard deviation and skewness increases, suggestive of
an increase, or much smaller decrease, in risky partners amongst some high-activity
individuals. (2) Behavioural response occurs in two distinct ways: some people make
incremental changes in number of risky partners whereas others completely abstain

from risky sex, choosing celibacy, monogamy, or safe sex instead.

Consider how changes in the distribution of rates of partner change affects the
basic epidemiological model, the susceptible — infected — recovered (SIR) model. The
SIR model is a system of partial differential equations describing, in the canonical
case, flows between the number of people susceptible to, infected by, and recovered
from a disease (see Anderson and May (1991) for an extensive discussion). Many
variants of this framework have been used to analyze the HIV epidemic (for exam-
ple, Sattenspiel (1990), Castillo-Chavez et al (1991), Hyman and Stanley (1994), or
Jacquez et al. (1994)). Behavioural change in this literature, when included in the
analysis, is handled in an ad hoc manner. Rates of partner change are frequently as-
sumed to change proportionally across people with different activity levels according
to some exogenously specified function of calendar time (examples include Hethcote
et al. (1991a and 1991b), Anderson et al. (1989), and Jacquez et al. (1994)). This
approach is problematic for two reasons. First, it is incapable of predicting future
behavioural changes to future changes in prevalence. Second, the assumption of pro-
portional decreases in rates of partner change across activity levels is not innocuous;

the shape of the distribution matters.

Analysis of the effects of behavioural change is complicated by the fact that
the mean is not a sufficient statistic for the effect of distribution of rates of partner

change on disease dynamics. In a neighbourhood around zero prevalence, it can be

the statistically insignificant amount 28.4 to 28.0.



shown (May and Anderson (1991)) that, under random matching, new infections are
proportional to

c=p+o’/p,

where p and o2 are the mean and variance of the distribution of rates of partner
change, respectively.® For illustration, suppose the mean and variance are functions
of prevelance, P. Then a marginal change in P around P = 0 induces

ol o) Lt

dP dP w2 pdP’
If an increase in prevalence induces a mean-preserving spread in the distribution, then
it spurs the disease. Further, even if the mean falls, if the variance falls by less than
(dp/dP)u[l — 0 /u?], new infections still increase with prevalence. In contrast, pro-
portional changes in rates of partner change would produce equiproportional changes
in the mean and standard deviation, and hence new infections also decrease propor-
tionately with these variables. Substituting the statistics in table 1 into the equation
for ¢, the number of new infections before behavioural change was proportional to
82.23; after behavioural change, new infections are proportional to 138.01, suggesting
that behavioural response may have spurred rather than retarded disease spread in

the early phase of the epidemic.®

The intuition underlying these results is that changes in the distribution of rates
of partner change affect the probability a given encounter is with a high risk person.
Reductions in risky behaviour by those with relatively few partners, all else equal,
actually spur the disease (Anderson et al. (1990), Whittaker and Rentin (1992),
Kremer (1994a)). This is because a reduction in rate of partner change by a low

risk individual increases the probability for everyone else of matching with a high

5 This result obtains because as prevalence approaches zero, the probability of infection
becomes proportional to number of partners.

6 This conclusion is weak, however, since it ignores changes in risk per partner, specifi-
cally, increased condom use.



risk individual. Hence, behavioural change, if it occurs asymmetrically across risk
groups, can have seemingly perverse effects: a reduction in mean rate of partner
change can be consistent with more rapid spread of disease and higher steady—state
prevalence (see Kremer (1994a) for an extended discussion). In general, analysis of
behavioural change must consider changes in the distribution of activity, not just

changes in that distribution’s first (or even first and second) moments.

Studies that incorporate economic incentives into epidemic models include
Philipson and Posner (1993), Geoffard and Philipson (1995), and Kremer (1994b,
1996). Geoffard and Philipson (1995) consider a population in which agents may
take one of two actions: protect against transmission or do not protect. Agents
determine whether to protect as the result of an optimal control problem. With het-
erogeneous agents, this model leads most notably to the prediction that the hazard
rate from susceptibility to infection may be decreasing in prevalence, as opposed to
the biological epidemiology result that more infecteds increase the risk of the remain-

ing susceptibles.

Kremer (1994b, 1996) considers an SIR model in which the rate of partner change
depends on prevalence according to an underlying utility maximization problem. Kre—
mer assumes that agents never learn their infection status and analyses only steady—
state prevalence, which allows him to collapse this inherently dynamic problem into
a static one. Suppose people select a lifetime rate of partner change, s, to maximize
u(s) — p(s, 0), where u(-) is the utility function and p(-,-) is the lifetime probability
of becoming infected, which depends on the selected rate of partner change and on
the probability a given partner is infected, f. Kremer seeks steady—state equilibria
(6 cannot change over an agent’s lifetime) in which the realized probabilities a given
partner is infected induces agents to select the rate of partner change which supports

those probabilities, for both homogeneous and two-group populations.



In this environment, Kremer shows that if activity is low enough that p(-,-) can
be approximated as linear in rate of partner change, then the desired rate of partner
change is decreasing in the marginal probability of infection from another partner.
If, instead, activity is high enough that p(-,-) is concave in s, then an increase in the

marginal probability of infection may induce “fatalism.””

Fatalism is defined as a situation in which an increase in the probability a given
partner transmits the infection increases the number of risky partners selected. This
counterintuitive effect occurs because an increase in the per—contact infection prob-
ability can decrease the marginal probability of infection for high—activity people.
Consider someone who has ten partners per year at a per—contact risk of 10%. His
probability of becoming infected by at least one partner is 1 — (1 —0.10)!° = 0.65. If
he chooses an additional partner, that probability increases to 0.69 — the marginal
probability of infection, evaluated at ten partners, is 0.04. If the per-contact risk of
infection rises to 0.12, then his probability of becoming infected by one of ten part-
ners rises to 0.72, but the marginal probability of infection from one more partner
falls to 0.03: the person has less incentive to avoid further risk because he realizes he

is more likely to already be infected by the first ten.

II. The Model

A. Basic Setup

Consider a person susceptible to an infectious disease who is in the market

for non-steady, anonymous partners for each of a finite number T periods. The

" McCusick et al. (1985) argue that“It cannot be assumed that [people] will change
their behaviour despite the fact that AIDS is lethal. Due to the apparently long period
... from exposure to diagnosis, many men are convinced that they have already been
exposed to AIDS, [so] they may not be motivated to change their sexual behaviour.”
This is the earliest exposition of the intuition behind fatalism with which I am familiar.



person selects a number of sexual partners each period.® Assume that all information
pertinent to assessing the probability that a partner is infected, particularly sexual
history, is strictly private knowledge so that potential partners are indistinguishable.

The number of risky contacts in the tt*

period, denoted s;, is a continuous, (for
example, 1 partner per year is equivalent to 0.5 partners per six months) non-negative
variable. There is a single infectious disease. At the end of each period, the agent
is either infected by one or more of his period contacts or he remains susceptible.

Uncertainty is resolved at the end of each period: whenever a decision is made, the

agent knows whether or not he is infected.

In period ¢, the agent faces a probability of becoming infected by a given contact
of 6;. This probability is equal to the product of the probability a contact is with an
infected person, denoted P;, and ¢, the probability that a contact with an infected
transmits the disease: 6, = ¢PFP;. When all agents choose contacts randomly from
the pool (as in the simulations presented in section III) P, hereafter referred to as
effective prevalence, is simply the proportion of total contacts offered that are from
infecteds. The effective prevalence usually exceeds the proportion of infected agents,
prevalence, since high-contact agents also have the greatest chances of being infected.
The model is, however, applicable to other types of matching so long as the agent
can change neither the probability of matching with an infected nor the probability

of transmission.?

8 I assume that transmission through over vectors, such as IV drug use, is similar enough
to sexual transmission so as not to affect the model. As noted, the majority of reported
HIV cases are from sexual contact.

For instance, the extension of the simple proportionate matching assumption to het-
erosexual populations (see, for example, May and Anderson (1991)) would not change
the optimization problem presented here. Other types of matching discussed in the
epidemiological literature, such as when partially observable sexual histories lead to
matching correlated correlated across activity levels (preferred matching) or matching
by infection status (Philipson and Dow (1994)) can be incorporated under the heroic
assumption that the agent can affect neither the probability a given partnership is with
an infected nor the probability of transmission. In other words, the matching pattern.
by activity level or infection status, must be specified exogenously.



Let h; denote the agent’s infection status, where h; = 1 means the agent is
infected and h; = 0 denotes susceptibility. The period return is composed of infection-
dependent benefits and costs, denoted b(s¢, ht) and c(st, ht), respectively. Define the

net period return:

U,(St, ht) = b(St, ht) — C(St, ht), (1)

The period return is assumed to be twice continuously differentiable and strictly
concave. It is further assumed to have a finite maximum, so that in the absence of an
epidemic (f; = 0 Vt) the agent simply chooses the number of partners each period
which maximizes u(st,0). Assume that, for values of s; where marginal utility is
non-negative,

u(st,0) > u(0,0) = 0 > u(sg, 1).

The agent weakly prefers having a positive number of partners over none — the utility
of which is normalized to zero — and prefers having none to being infected. The period
return is indexed by a parameter o such that a higher value of a implies higher
marginal utility at any given s;, although I will suppress the argument in order to
simplify notation. A “high-risk” type refers to an agent with a relatively high value
of . The period return for an infected is assumed to have the same properties, but
may have a different maximum than the return for susceptibles. In section III, the
period return is given a functional form and the distribution of « is calibrated to
survey data. Note that the number of partners selected in any period has no direct

effect on any other period’s return; the utility function is additively separable.

The probability of becoming infected by one or more contacts is given by
p(st,0:) € [0,1] and the probability of remaining susceptible is q(s;, 0;) = 1—p(s¢, 0;).
Assume that the probability of becoming infected is given by the usual formula for

at least one success in s; trials with per—trial success rate 6;:

p(st,0:) =1 — (1 —0;)°. (2)

10



The agent is assumed to act as if he knows present and future values of the per—

contact infection probability 6;.

I assume people spend only a portion of their lives in the market for randomly-
matched sexual partners. Since the model considers time spent in this market rather
than the agent’s entire lifespan, an agent receives a utility “bonus” for remaining
10

susceptible at the end of the modeled time span of B units, receiving 0 otherwise.

Future returns are discounted at a constant rate 3.

Infected agents simply choose the satiation number of partners per period:!!
8¢|n,=1 = argmaxg, u(s¢, 1). (3)

Evidence suggests that factors such as aversion to affecting others are important
considerations in the choices infecteds make (Cates et al. (1988), Schecter et al.
(1988), McCusker et al. (1988)), so I allow the number of contacts selected by
infecteds to be lower than the number of partners selected by susceptibles in the

absence of disease.

The susceptible agent’s problem is to maximize expected utility at each period

t12:
T i—1 %
rlgthUt:Z p(si;0:) | [ ] a(s;,65) {Zﬂ’“‘tu(s:c,ﬂ)
1=t j= k=t

T T
+ > ﬁ’“—tu(sk,l)}> +677 [ [ a(si, 09)B. (4)

k=i+1

10 This assumption prevents agents approaching the last period from having no incentive
to avoid becoming infected.

11 However, there is evidence that repeated exposure may accelerate conversion to AIDS,
decreasing life expectancy (Phair et al. (1992)). I abstract from this fact. Also,
since the period return is infection—status dependent, this specification can incorporate
altruistic behaviour by infecteds.

12 Equation (4) uses the notational convention that [T, () =1lify <z

11



which, due to the separable utility function, can be written much more compactly in

recursive form. Bellman’s equation for a susceptible in period ¢ is:

V0, T —-t)= max {u(st,0) + Blp(se, 0:)V(L, T —t — 1) + q(s¢,0:)V(0, T — ¢t — 1)},
t

(5)

where V' (h¢, 7) denotes the value function of an agent with health state h; with 7 peri-

ods remaining in the “market.” By (3), an infected agent receives u! = max;, u(s¢, 1)

per period each period until the end of the modeled time period,'? so

V(,T—t)= 1;__;3t;u,, (6).

which does not depend on any infection probabilities. For notational convenience,

define A; as the loss associated with becoming infected in period ¢,
A =V(0,T-t-1)-V(1,T-t-1) (7)

That is, the loss to becoming infected in period ¢ is equal to the difference in the

value functions associated with susceptibility and infection in the following period.

B. Discussion.

Using (2), (5), and (7), a susceptible agent’s problem in period ¢ can be written,
ms?xu(st,O) —B(1— (1 —6,)%))A;. (8)

Intuitively, the agent can increase today’s utility only at the cost of increasing the

probability that he will lose A;. The first-order condition is:

w = B(=in(1 = 0:)(1 = 6,)*) Ay ®)

13 Note that there is no disease-induced mortality in this model; incorporating it is
straightforward but does not qualitatively affect the agent’s problem.

12



The right-hand side is the marginal decrease in expected lifetime utility from increas-
ing s, that is, it is the marginal cost of risky behayiour. The left-hand side is simply
the marginal utility of risky behaviour. The agent sets s; to equalize these quantities
at an internal solution (note that there is no analytical solution for s;), as shown in

figure 1 for two values of 6;.

Marginal utility is linear and decreasing in s;, with intercept (—In(1 — 6;))4\,
whereas marginal cost is convex to the origin. The solution to (14) does not necessar-
ily yield the optimal s; given there may be a local minimum or the interior solution
may yield lower expected utility than setting s; = 0. The second-order condition for

a maximum is:

— Bzu(st, 0)

O = 57 BA[—(In(1 — 6;))%(1 — 6,)%t] < 0. (10)

Intuitively, this inequality requires that the marginal cost curve must strike the
marginal utility curve from below for a maximum to be reached. Denote the value

of s; which satisfies the first and second order conditions s;.

The following propositions characterize the agent’s responses to changes in the
interesting variables, infection risk over time. The proofs make use of the following

lemma:

LEMMA. The net benefit of remaining susceptible, A¢, is: 1) independent of the
current infection probability (0A;/06; = 0), and 2) weakly decreasing in any future
infection probability (0A:/00:4+; < 0,0 < i <T —1t).

PROOF:

Part 1 follows directly from equations (4) and (5); infection risk today does not affect
the value of being infected or susceptible in the future. To prove part 2, consider
expected utility at period ¢ evaluated at an arbitrary sequence of partnership choices,

{5:}. Anincreasein0;y;, 0 <1 < T—t,doesnot change the probability of becoming

13



infected prior to ¢t +:. If 5;4; > 0, the probability of becoming infected in period ¢+
rises. Expected utility in period t+7+1 is independent of 6;;. Since the probability
of infection in ¢ + ¢ is weakly higher, expected utility evaluated at {3;} is decreasing
in 6;4;. But {3:} is an arbitrary sequence, so expected utility is also decreasing in

0:4; for the optimal sequence. QED.

The first proposition shows that pessimistic beliefs about the future course of

the epidemic tend to increase current risky behaviour.

PROPOSITION 1. An increase in a future per-contact infection probability will
increase the optimal number of partners chosen in the current period, that is,

Bst/39t+i > 0, 1€ {l,T - t}

PROOF:
Differentiate (14) with respect to 644k, £ > 1 to find:

058 _ B (in(1 - 0,)(1 - 0))")

_ ov(,t-1)
00 O

11
00k — (1)

The inequality holds by the Lemma. QED.

To see the intuition, consider one extreme case in which the agent knows the
disease is going to be cured next period, §; = 0,2 = ¢t + 1...T. Risky behaviour
today is potentially very costly, as the returns to partnerships in the future are
large. At the other extreme in which future infection probabilities are expected to
become and remain very high, risky behaviour today is less costly since there is not as
much to lose. Equivalently, an increase in a future infection probability increases the
probability the individual places on becoming infected in the future (more accurately,

decreases expected future welfare because of increased chances of becoming infected at

14



any given activity level), which decreases incentives to remain susceptible today.}* A
more pessimistic view of future conditions decreases the expected net cost of becoming
infected, which in turn decreases incentives to reduce risk in the current period. One
implication of this reasoning is that the announcement of the future release of a
partially effective vaccine will reduce new infections immediately. This holds even
if, when the vaccine is released, people respond to the reduced risk of transmission
by increasing risky behaviour: if the product 8 = @¢P is expected to fall, expected

welfare increases and current risky behaviour decreases.

The next proposition shows that an increase in current risk will tend to increase

risky behaviour for very high-risk agents while reducing such behaviour for others.

PROPOSITION 2. (Kremer 1994b) An increase in date t’s per-contact infection

probability has an ambiguous effect on he number of partners chosen at date t.

PROOF:

Totally differentiate (14) with respect to 6; to find:

0s;
89:; = g—(l — Bt)s‘_l[l + stln(l - gt)]At, (12)
which is negative iff
1+ stln(l - Ht) > 0. QED. (13)

If the cross-derivative 8%p/0s;00; is positive, so the marginal cost of another partner
is increasing in 6;, then an increase in 6, causes the agent to decrease risky contacts.
Note that an increase in ; causes a decrease in number of partners if

0y <0,=1— ezp(—slt), (14)

14 A recent article in the New York Times Magazine (Green 1996) argues that reductions
in risky behaviour occurred “at least while it was still believed that the disease might
disappear momentarily,” but that risky behaviour increased when “it became clear that
no cure was imminent.” This observation be interpreted as a pessimistic revision of
expectations inducing more risky behaviour. An alternate economic explanation for
the “relapse” to unsafe behaviour is given by Philipson and Posner (1993).

15



where 6; denotes the critical value of 6; at which 0s; /00; becomes positive.

This possibly counterintuitive result implies that if this period’s per-contact
infection probability rises then some agents may choose higher levels of risky
behaviour.!® This effect occurs because the marginal probability of remaining unin-
fected, conditional on s, is decreasing in 6; for 6; > ét. As illustrated in figure 1,
increasing 6; increases the intercept and slope of the marginal cost schedule, imply-
ing (as is clear from the observation limg,_,oop(st,6;) =1 V6O; > 0) that it crosses
somewhere, as illustrated in figure 1. If the crossing point occurs at a value of s;
lower than the optimal s;, then the counterintuitive result holds. Conversely, if the
crossing point occurs at a value of s; higher than the optimal s;, then an increase in
per—contact risk of infection causes the agent to decrease the number of risky contacts

selected.

COROLLARY. Increases in the per—contact probability of infection may increase

variance in the amount of risky behaviour.

From (14), we see that agents with high values of s; are more likely to increase s; in
response to an increase in ;. Therefore, there exists some threshold level of activity
(specifically, §; = —(In(1 — 6;)~!) such that agents below this level decrease activity
and vice versa. This in turn results in a spread of the distribution of s; if any agents
had activity levels greater than ;. Statistical methods that only examine changes in
the mean of s; may then underestimate the true magnitude of behavioural response,
since some agents are increasing and some decreasing their exposure levels. Note

that no specific per-contact probability of infection is required to induce fatalism;

15 This result is identical to Kremer’s (1994b) result in the case where the number of
periods is one. In the dynamic case, it holds within any period rather than within the
agent’s lifetime.

16



even very low effective prevalence can produce increases in partners in response to

an increase in risk if activity levels are high enough.'®

Proposition 2 implies that behavioural response induced by increases in 6; may
have perverse effects on the spread of disease. As discussed in section I, increases in
the variance of activity increases the rate of change of prevalence, since the probability
of matching with one of the highest risk agents increases. Here, the agents who
increase their activity levels are the most active ones, who are also the ones most likely
to be infected. Since these agents play a disproportionately large role in spreading

the disease, any increase in their activity levels will accelerate the epidemic.

PROPOSITION 3. Changes in a steady-state per-contact infection probability

have an ambiguous effect on number of partners selected.

PROOF:

Define 0 as the steady-state infection probability, that is, 8; = 8 Vi. Then

as: —_ ﬂ St—l
50 — ((—9) [(1 6) [1+4 sen(1 — 6)]A;
5, V(0,1 —1)
—in(1-0)(1-96) — 20 | (15)
which is negative iff:
t—1
(14 sn(1-0))A; —In(1-0)(1 - 0)%0) > 0. QED. (16)
Note that
osf 0sy 1 sy V(0,6 —1)
58 = g0 T o(Tin(1-0)(1-0))—2— (17)
Since the last term is positive, we have
O0s; _ 0sf
0 ~ 98, (18)

16 For instance, if a period is one year, a person with 250 partners per year will become
fatalistic at a per-contact infection probability of only 0.004.
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An increase in a future probability increases s; unambiguously; an increase in the
steady-state probability increases both current and future probabilities, so the steady-
state change will be greater (less negative, possibly) than changing only today’s rate.
Agents not exhibiting fatalism reduce their number of partners less, and fatalistic
agents increase their number of partners more, relative to the case where only the

current probability changes.

It is plausible that changes in the perceived current risk of infection will also
change expected future risk of infection. Kremer (1994b) notes that (13) implies
that the probability of infection at which fatalism begins is 1 — 1/e ~ 0.63.17 This
probability will be lower, however, if expected future infection risk rises with current
risk: from (18), ds;/00 = 0 implies 0s;/06; < 0, implying the critical value of s; at
which fatalism begins is lower when steady-state prevalence changes. Generally, if
increases in beliefs about current risk are associated with increases in expected future
risk, disease-minimizing behavioural response will be diminished: those reducing their
activity will do so by a smaller amount, a greater number will increase their risky
behaviour, and those already exhibiting fatalistic responses will further increase their

risk levels.

An implication of increased risky behaviour in response to more pessimistic fore-
casts of the future path of the epidemic is that statistical methods that overestimate
future cases contribute to disease spread. For instance, Philipson and Posner (1993)
note that the Centers for Disease Control predicted in 1988 that, “365,000 AIDS
cases would be diagnosed in the United States through 1992 ... in fact by the end
of 1992 only 253,000 cases had been reported.” To the extent that individuals are
aware of such projections and base their own predictions upon them, a direct im-

plication of proposition 3 is that these overly pessimistic forecasts increased risky

17 To see this, exponentiate both sides, add P(st,60t) to both sides and simplify. See also
Kremer (1996) for a case in which fatalism sets in at a lifetime infection probability of
one-half.
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behavior, thereby spurring the epidemic. A related implication is that educational
efforts designed to minimize risky behaviour should not emphasize dire predictions

of the future state of the disease.

Now consider the conditions under which an agent will participate in the market.

The internal solution, s}, will be selected if
u(sy,0)+Bp(s;,0)V(L, T —t—1)+q(s;,0:)V(0, T—t—1)] > pV(0,T—t—1). (19)

If this inequality does not hold, the agent chooses to have no risky contacts, since he
can get BV (0,t — 1) with certainty by setting s; = 0, whereas he receives expected
utility equal to the left-hand of (19) side at the interior solution. Substituting and

rearranging,
u(sy,0) > Bp(sy)A:. (20)

The left-hand side is the gain in this period’s utility and the right-hand side is the

expected loss from setting s; = s} rather than zero.

PROPOSITION 4. 1) An increase in the current infection probability decreases
the probability of participation, whereas 2) an increase in a future infection probability
increases it, and 3) a higher steady-state infection probability has an ambiguous affect

on participation.

PROOF:

Differentiating (20) with respect to 6; and invoking the envelope theorem, the left-
hand side does not change and the right-hand side changes by —3A:9p(s¢, 6;)/06; <
0. This establishes the part 1) of the proposition. Part 2) follows by differentiat-
ing with respect to a future infection probability, the right hand-side changes by
—Bp(st,0:)0A:/00r4; > 0, 1 € {1,T — t}, which establishes that an increase in a

future expected probability increases participation. If the steady-state probability
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changes, participation increases iff A;(0p(st,0)/060) + p(st, 0)(0A:/06) < 0, proving
part 3).  QED.

If the current per-contact probability of infection increases ceteris paribus, the
cost of participating in the market rises while the benefits do not, inducing more
people to exit. If a future probability increases, the costs of participating fall, since
it is less beneficial to remain susceptible in the future, leading to fewer exits. When
both change due to a change in steady state, participation could either increase or
decrease. Non-participation can be interpreted in either of two ways: agents become
celibate or monogamous (under the assumption that subjective risk under monogamy
is negligible), or that the activities chosen with multiple partners have a subjective
risk of zero, for instance, strict condom use. Which interpretation is used is irrelevant
to the theoretical model, but affects the dynamics of the disease — if exit is into
safe-sex partnerships and those participating in the market match not only with each
other but also with those not participating who insist on condoms, disease spread
will be retarded since the risk of matching with a high-risk, transmissive partner is
diminished (Kremer (1994a)). If, on the other hand, those insisting on safe sex match
only with each other, their exit increases risk in the pool of those still participating,

accelerating the epidemic.

In the usual case where the lowest-risk agents are the first to cease partici-
pating in response to increasing effective prevalence,'® proposition 4 implies that
variation along the extensive margin in response to an increase in today’s risk will
spur rather than retard the spread of the disease (with either of the interpretations
of non-participation). The lowest-risk agents are also the least likely to be infected;
their exit increases the proportion of active agents who are infected, which can dra-

matically increase effective prevalence among agents still participating. On the other

18 This case is guaranteed only if the utility function is specified in such a way that
0A/da < 0, for instance, by a specification in which disease-free indirect utility is
normalized to be constant across a.
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hand, expectations that conditions will be worse in the future cause more low-risk
agents to participate, which can reduce the speed at which the disease spreads. The
participation decision does imply an upper bound on prevalence in the long run: for
any given steady-state effective prevalence, a proportion of agents never participate

in the market for risky sex at all, and hence cannot become infected.

Recall that the per-contact infection probability is the product of the effective
prevalence and the biological probability of transmission. Propositions 2 through 4,
since they are based on comparative dynamics with respect to this product, hold for
either effective prevalence or the transmission coefficient. This implies that, under
non-fatalistic behaviour, a reduction in the transmission coefficient, due to, for in-
stance, substitution towards safer forms of sex, less sharing of needles, or a partially
effective vaccine, will be at least partially offset by an increase in activity (simi-
lar arguments are given by Brauer, Castillo-Chavez, and Velasco-Hernandez (1994)
and Kremer (1994b), and the general argument closely resembles the theory of risk
homeostasis (for example, Peltzman (1975)). Under fatalistic behaviour, a reduction
in the transmission coefficient will have reinforcing second-order effects. That is, if
0s;/06; > 0 then 0s;/0¢ > 0, so a reduction in ¢ will cause a reduction in s} for
high-activity individuals. This effect is reinforced by the change in expectations due
to a change in ¢: if ¢ decreases not just in the current period but permanently, ex-
pectations that the future situation has improved induces further decreases in risky
activity, by propositions 1 and 4. Hence, substitution towards safer contacts may,
in and of itself, lead to reduced rates of partner change amongst the highest-risk

individuals.

It is worth emphasizing that the driving assumption in the model is the fact
that agents do not know whether a previous within-period contact has infected them.
If the agent’s infection status were revealed after each contact, the decision process

collapses to a comparison of the benefits and costs of one more partner, conditional
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on being susceptible, as opposed to the benefits of one more partner, conditional on
having had some number of partners in the past with uncertainty about transmission.
The formulation here provides a tractable approximation to a continuous time model
where uncertainty about past contacts is revealed with a lag. The key point is
that the marginal probability of infection for one more partner is not constant when

uncertainty about past contacts is unresolved.
ITI. Simulations

A. Setup

The complexity of the modeled behaviour precludes analytical solutions for the
time-path of the epidemic. I employ numerical simulation to explore the implica-
tions of rational behaviour and contrast them to the the assumptions of biological
epidemiology and explore some implications of rational behavioural response. A
detailed explanation of the simulation environment can be found in the Appendix.
Briefly, in order to focus on behavioural considerations, the epidemiological environ-
ment is highly simplified: there is no disease-induced mortality, matching is purely
random, and infectivity does not depend on time elapsed since infection.'® Time is
discrete; agents remain in the market for 30 periods, where each period represents

six months of calendar time. The period return function is assumed to be quadratic,

u(st,0) = asy — sf, u(sg, 1) = yass — sf, v € (0,1).

Per—contact utility, and hence number of partners chosen relative to the satiation
number in the absence of disease, is scaled down by a factor v for infecteds, which
allows the number of partners chosen by infecteds to reflect aversion to infecting oth-

ers. This parametrization implies that an agent’s value of « is identified by observing

19 1t is well-known that infectivity actually varies greatly with time since infections, see
Jacquez et al (1994).
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his rate of partner change in the absence of disease, since argmaxg, u(s¢,0) = a/2.
Agents are heterogeneous in . There are 100 types per generation. The n!* type
corresponds to the nt? percentile of the distribution of rates of partner change in the
absence of disease in the SFMHS. Other parameters are chosen to be consistent with

other studies when known (see Appendix), in an ad hoc fashion otherwise.

B. Belief Formation

The formation of expectations are crucial to the modeled behaviour. I examine
three different classes of expectations: myopic, adaptive, and perfect foresight or
“rational.” Myopic expectations, here used synonymously with a discount factor of
0, imply no behavioral changes occur (when f3 is zero, agents select the satiation
number of partners each period), corresponding to the assumptions frequently made
in the biological epidemiological literature. This case is considered as a baseline
with which to compare the impact of rational response on disease dynamics. Agents
with adaptive expectations observe the effective prevalence in the previous period
and assume that same probability holds in the current period and all future periods.
Perfect foresight expectations refers to the case in which expectations are fulfilled:
agents know today’s and all future effective prevalences. See the appendix for details
of the computation of the perfect foresight solutions. Perfect foresight differs from
adaptive in that agents with perfect foresight will correctly predict future changes in
prevalence and change their current behaviour in response, although in a non-cyclic

steady state the two modes of expectation formation will be identical.

Consider the effect of expectations on disease dynamics. Figure 2 shows inci-
dence paths for agents with myopic, adaptive, and perfect foresight expectations with
a transmission coefficient of 0.125 and Figure 3 with a transmission coefficient of 0.05.
With the lower transmission coefficient, both adaptive and perfect foresight expec-

tations involve faster disease spread than the myopic (no behaviour change) case for
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the first several years of the epidemic. Perfect foresight expectations involves faster

spread than adaptive,2°

since, as per Proposition 1, agents who believe that the epi-
demic is going to become worse do not reduce their risky behaviour as much as if
they are not forward looking. Figure 2, however, shows that with a higher trans-
mission coefficient, the disease spreads fastest in the myopic population. In either
case, steady-state levels are significantly higher when no behavioural change occurs,
largely because of the significant steady-state non-participation in the economic so-
lutions (Figure 4). These simulations demonstrate that behavioural response can

either spur or slow spread of disease, depending on the underlying epidemiological

and behavioural parameters.

C. Policy interventions: information and vaccines

Geoffard and Philipson (1995) argue that public subsidies to change behaviour
are crowded out by increases in prevalence (in their model, both subsidies and in-
creases in prevalence increase incentives to cease risky behaviour) and emphasize the
role of information in the spread of HIV. Figures 5 and 6 consider the effects of the
most important form of information: the existence of the disease and how it is trans-
mitted. HIV spread rapidly in the homosexual population in the U.S. between 1981
and 1984, a time when the disease itself and its transmission modes were first being
identified. When people are unaware an illness exists, they simply select the satia-
tion number of partners. When information that the disease exists becomes common
knowledge, behavioural response sets in. Figure 5 shows prevalence paths for four
epidemics: the myopic case, and three with perfect foresight expectations with vary-

ing delays from the beginning of the epidemic to the time when agents simultaneously

20 The framework here understates the difference between expectations in the early stages
of the epidemic, since with adaptive expectations agents believe that today’s effective
prevalence is the same as it was last period whereas perfect foresight agents know
today’s probability, so when effective prevalence is rising adaptive agents systematically
underestimate today’s risk and behave more riskily.

24



learn of its existence. Prevalence decreases monotonically to its steady—state level

upon release of information the

disease exists if it had already exceeded the steady-state level. The later infor-
mation is released the greater the total number of infections that take place, despite
the equivalent steady—state levels. Figure 6 illustrates that, because of behavioural
change, new infections fall upon release of information to the level that would have
prevailed had the disease been discovered earlier. Despite the larger pool of infect-
eds, excess infections due to ignorance of the disease are immediately curtailed by
behavioural change upon release of the information. These effects corroborate Geof-
fard and Philipson’s argument: steady-state prevalence is invariant to when people
become aware of the disease, but total infections are an increasing function of time

to the release of information.

Consider the effects of the release of a partially effective vaccine, modeled as a
decline in the transmission coefficient, ¢. Castillo- Chavez and Hadeler (1994) and
Kremer (1996) argue that the release of a vaccine could increase infections if offsetting
behavioural change is strong enough. This effect is illustrated in figure 7, displaying
prevalence for an epidemic in which a vaccine which reduces the transmission coeffi-
cient from 0.125 to 0.025 is introduced twelve years after the epidemic begins.?2! Even
with this dramatic reduction in per-contact transmission rates, prevalence rises for
both adaptive and myopic expectations, while falling in the myopic case. This effect
occurs for two reasons: variation on the intensive margin increases rates of partner
change for most agents, and also because far more agents participate after the vaccine
is introduced (figure 8). Effective prevalence actually falls (undisplayed) despite in-

creased average activity levels due to the increase in participation by low-risk agents,

21 Prevalence before the vaccine release is lower for the perfect foresight solution than the
adaptive solution because the former anticipate, from the beginning, the release of the
vaccine at 12 years and hence engage in less risky behaviour each period prior to the
vaccine, by Propositions 1 and 4.
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yet many more people at risk cause infections to rise. This is again suggestive that
the participation decision is more important to disease dynamics than incremental

changes in number of partners.

In summary, the simulations show that behavioural response can dramatically
affect disease dynamics. Adverse selection, in which low-risk agents exit the market
first and proportionately reduce risky behaviour the most, can accelerate the spread
of disease during its early stages. This effect is exacerbated by expectations the epi-
demic is to become worse in the future. A partially effective vaccine, even one which
dramatically reduces per—contact infectivity, is predicted to increase the number of
infections which take place. The date at which the population becomes aware of the
existence of the disease can dramatically affect the total number of infections which
occur, although steady-state prevalence will be unaffected. Predicting the future
course of the AIDS epidemic and the consequences of policy interventions could be
accomplished by formal estimation of the parameters of the underlying model with

a more realistic epidemiological environment.

IV. Concluding remarks and directions for future research

This paper demonstrates that rational response to an infectious disease can lead
to perverse and counterintuitive effects for both the individual and the population.
An individual’s response to increased risk of infection may be to undertake even
more risk. The tendency for low-risk agents to cease risky activities before higher risk
agents, coupled with lower reductions or even increases in activity for high risk agents,
tends to accelerate the spread of the disease. I also show that expectations about
the future course of the epidemic affect current behaviour; pessimistic expectations
decrease incentives to avoid risk. Public health efforts designed to minimize disease
spread should not emphasize rapid spread of the disease or make dire predictions

about the future of the epidemic.
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Simulation of the model calibrated to epidemiological and behavioural data re-
veals that disease dynamics are affected greatly by behavioural response. Both the
extensive and intensive margins affect spread and steady-state prevalence. Policy
simulations show that public efforts to transmit information about the existence of
the disease and its modes of transmission can decrease the total number of infections.
However, the release of a partially effective vaccine, at the calibrated parameter val-
ues, is predicted to increase prevalence, mostly through an induced increase in the

number of agents who participate in the market for risky sex.

The results presented here suggest other implications for the economic analysis

of epidemics that remain to be explored:

First, it is not productive to attempt to estimate the elasticity of demand for
risky sex to prevalence. The demand for risky sex is not analogous to the demand
functions for commodities ordinarily encountered in economics. We can sum the
demand for apples across consumers, but we cannot similarly aggregate the demand
for risky sex because the entire distribution of rates of partner change affects the
dynamics of the epidemic. For example, a reduction in number of partners for the
top decile of individuals does not have the same implications as the same reduction
for the least active decile. Consequently, empirical investigations of the response
to changes in risk should attempt to measure not a single elasticity but a response
function across activity levels. Further, exit from the market for risky partners is at
least as important as changes at the margin, so response at both the intensive and

extensive margins must be estimated.

Second, this paper implicitly assumes that the search costs of acquiring new
partners are not affected by changes in others’ rates of partner change. If, in fact,
it becomes more costly to find partners when fewer partnerships are being offered
in total, then increasing one’s rate of partner change generates externalities other

than increasing risk of infection to others — the higher level of activity makes it
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easier for others to trade, which could generate multiple equilibria. If this effect is

quantitatively important, it complicates empirical analysis of behavioural response.

Third, this paper takes the amount of calendar time between updates of infection
status and the probability a partner is infected as fixed, but presumably both of
these variables are endogenous. A seemingly apparent implication of this model
is that subsidized testing would slow disease spread as it decreases risky behaviour
amongst those finding they remain susceptible, increasing the incentive to avoid risky
activity. However, the endogenous nature of testing may belie this conclusion: if
low-risk agents choose to test more frequently than their higher risk counterparts,
then the result of subsidized testing will be relatively less risk reduction by high-risk
agents, which will accelerate the spread of the disease. Philipson (1994) argues that
neither low nor high risk individuals will choose to test, since these groups are most
certain about their infection status and therefore have the least to gain from testing.
Subsidized testing, then, may not minimize the spread of the disease, as those at
highest risk will tend to be amongst the last to be induced to test, and reductions in
risk by those in the middle may actually spur the disease. More research is needed

on the interrelation between rate of partner change and testing.

Finally, this paper, following both the biological and economic epidemiological
literatures, takes the probability of transmission from risky sex to be parametric.
Empirical evidence (for example, Lawrence et al. (1989)) falsifies this assumption:
not only do people respond to risk of infection by changing their number of risky
partners and exit into monogamy, they also change the sorts and number of acts
performed with each risky partner they do have, which effectively endogenizes the
transmission parameter. As Kremer (1994b) argues in the case of condoms, the
mixing pattern between individuals practicing various levels of sex can affect the
course of the epidemic. However, the incentives individuals have when selecting the

level of risk in a given partnership are not well understood.
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APPENDIX

Details of Stmulation Environment

Time is discrete. Each period, a group of N agents is born into the “market” for
randomly-matched sexual partners. The period return is quadratic, as described in
the text. Agents are identical up to the taste parameter, c;, which effectively indexes
disease-free rates of partner change (recall that s = /2 in the absence of disease).
Agents remain in this market for T" periods, regardless of whether or not they become
infected. The period return for infecteds is adjusted so that all types receive the same
return, D, when infected, to simplify calibration. This normalization is equivalent to

subtracting v2a2/4 — D from the period return function for infecteds.

Each period, agents select a number of partners, s, according to the optimization
problem discussed in section II. Let S denote the set of susceptible agents and I the
set of infecteds. Then the probability a given contact is with an infected is

> Si

P= S .
Z 8; + Z S;
i€l i€S
Let ¢; denote the possibly time-dependent probability that an infected trader infects
a susceptible on a given trade. Then the per-contact probability of infection in period

t is:

Ot = ¢tPt-

New infections each period were assigned according to the above two equations and
equation (2). Since the number of agents is finite, the endogenous aggregate vari-
ables follow a stochastic process. If there are N identical agents who face a period
infection risk of #, then the number infected would follow a binomial distribution

with parameters (IV, #). Although this does introduce unwanted uncertainty into the
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simulation, with a large number of agents the discrepancy between the expected pro-
portion infected and the realized values of this variable will be small, as the variance

of the proportion of successes is inversely related to N.

The simulations are calibrated to roughly match the situation in San Francisco
from the late seventies through the late eighties, in order to provide some concrete-
ness without the expense of formal estimation of all the parameters. The distribution
of a was chosen to match the distribution of rates of partner change prior to the epi-
demic, as in Table 1. Specifically, 100 types, corresponding to the percentiles of the
distribution of partners prior to 1982, are assigned, with 15 agents per type per gen-
eration. Each period is assumed to be six months of calendar time and agents remain
in the market for thirty periods, so that there are (100)(150)(30)=600,000 individ-
ual agents in the market at any given time, with (30)(100)=3,000 unique dynamic
optimization problems to be solved each period. The transmission coefficient, ¢, was
chosen to be consistent with epidemiological evidence while abstracting from variable
infectivity. Grant et al. (1987) finds a per-partnership transmission rate of 0.102.
The proportion of satiation partners chosen by infecteds, -y, was chosen to be close
to the observed ratio of pre-AIDS partners to post-AIDS partners selected by men
infected as of the first wave in the SFMHS. Amongst those testing positive in the
first wave who had a positive number of partners in both periods, the mean number
of partners in the post-AIDS period was 14.5, in the pre-AIDS period 25.7, for a ratio
of 0.55. The discount factor § was chosen to be consistent with its usual range in
econometric studies. The remaining parameters, displayed in Table 2, were chosen
in an ad hoc manner to loosely correspond to the early course of the epidemic in San
Francisco. Epidemics were started by randomly infecting 0.1% of the population in

the first period.

The simulations were written in Fortran 77, compiled using the XLF compiler,

and executed on an an IBM RS/6000 model 43P running at 133 megahertz. Each
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simulation, or iteration on the perfect foresight solution, took roughly five minutes of
CPU time. The agents’ dynamic programming problems were solved by backwards

induction on the Bellman’s equation.

Computation of perfect foresight equilibria
The perfect foresight solutions were computed by the following algorithm:.
1. Posit an arbitrary sequence of expected prevalences, Ff.

2. Simulate the epidemic that results from expectations Py and store the correspond-

ing realized effective prevalences, FPj.

3. Update the expected effective prevalences by using a linear combination of the

expected and observed prevalence paths, Pf = (0.5)P§ + (0.5) Pp.

4. Continue iterating on expected and observed prevalence paths until a convergence

criterion is met.

The convergence criterion used in the simulations in the paper was that the
average deviation between expected and observed outcomes must be less than 0.005
and no particular period can have an error greater than 0.01. Since there is some
stochastic variation in outcomes, attempting to use a more stringent convergence cri-
terion leads to excessive numbers of iterations. The limits here produce convergence
in an average of approximately ten iterations. Note there is no guarantee that this

procedure will converge, but hundreds of trial simulations produced only one failure.
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Pre-1982

Late 1983 /Early 1984

Mean
Std. Dev.
Skewness

Percentiles:

5

25
50
75
95
99

18.4
34.3
4.6

0.4
1.99
6.4
19.7
79.17
178.3

12.0
38.9
15.2

2.0
4.0
10
50
120

Observations: 716

(Source: Computed using San Fransisco Men’s Health Survey, Wave 1)

Table 1: Pre and Post AIDS Rates of Partner Change, SFMHS



Parameter Description Value
¢ transmission coefficient 0.125

¥ reduction in activity for infecteds 0.666
T modeled lifespan, periods 30

N number of agents at any time 600,000
B utility bonus for exiting susceptible 250

D per-period utility penalty for infection -10

8 discount rate 0.975

Note: distribution of a calibrated using SFMHS

Table 2: Simulation Baseline Parameters
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Figure 7. Prevalence with Vaccine Release at 12 Years
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Figure B8: Participation with Vaccine Release at 12 Years



